

Geology of the 100-N Area

100-N Monitoring Well Network

Hydrogeologic Cross Section and Contaminant Distribution within the Stronium-90 Plume at the 100-N Area

100-N Contaminant Release

- Nearly all significant contaminant release was to LWDF's 1301-N & 1325-N
 - Spent fuel storage basin overflow
 - Primary reactor loop coolant bleed-off
 - Reactor decontaminant rinse solutions
 - Reactor drains
 - Sodium dichromate (1301-N only; ceased in 1973
- 1310-N
 - High-contamination fluids trucked to 200 Area for disposal

Other Potential Contaminant Release Sites

- 1310-N (116 N-2) Radioactive chemical waste treatment & storage
 Facility
- 1304-N Emergency Dump Tank & 1300-N (116-N-4 Emergency Dump Basin for primary loop reactor cooling water
- 118-N-1 Fuel Spacer Storage Silos (2 small unplanned releases reactor water)
- 105-N Spent Fuel Storage Basin
- 116-N Tank Farm (Petroleum spill Largest, 80,000 gallons Diesel oil spilled in 1966)
- 1324-N (120-N-1) Percolation Pond-treated corrosive regeneration effluent, process & cooling water from demineralization plant
- 1324-NA (120-N-2) Surface Impoundment- double-lined impoundment with leak detection – used to neutralize acid & caustic regeneration effluent from demineralization plant
- Unknown source(s) of Nitrate Possible use of nitric acids in facilities, unknown inventory

What is a picoCurie?

- 1 Curie (Ci) = That quantity of radioactive material that results in 37 billion disintegrations/second, equivalent to 1 gram radium
- 1 picoCurie = Pico" is a metric prefix that means one one-millionth of one one-millionth = 1/trillianth (10⁻¹²)of 1 curie
- 1 picoCurie = That quantity of radioactive material that results in 2.2 nuclear disintegrations/minute

100-N Effluent Discharges to LWDF's

- Strontium-90 concentrations at N Springs reaches 5,000 pCi/liter in 1985
- Strontium-90 groundwater plume concentrations peaked in excess of 45,000 pCi/liter beneath 1325-N in late 1989
- Strontium-90 groundwater plume persists; max concentration ~ 1,000X MCL

100-N Mounding During Operations

Figure 4-12. Comparison of Water Table Elevations over Time at Groundwater Monitoring Wells near 1325-N Liquid Waste Disposal Facility (Wells 199-N-32 and 199-N-52)

Strontium-90 Soil Sampling Data

Sr-90 Impacts to Columbia River during Operations

Strontium-90 Plume Maps

Sr-90 plume over time

1996

Fall 2006

Very little change over time, especially since P&T placed in cold standby

Radionuclide Inventory 100-N LWDF's (DOE/RL-95-110 Draft A)

1301-N LWDF

1325-N LWDF

Radionuclide	Half-Life (Yr)	Inventory (Ci) 1995	Radionuclide	Half-Life (Yr)	Inventory (Ci) 1995
Tritium	12.7	1803	Tritium	12.7	421
Cobalt-60	5.2	1095	Cobalt-60	5.2	416
Strontium- 90	29	1630	Strontium- 90	29	236
Ruthenium- 106	1	0	Ruthenium- 106	1	0
Cesium-134	2.1	2	Cesium-134	2.1	1
Cesium-137	30.2	1857	Cesium-137	30.2	391
Plutonium- 239	24,111	18	Plutonium- 239	24,111	3

Impacts of Flood Events on Sr-90 in Groundwater

100-N Conceptual Model

Geochemistry of Stontium-90, cont'd

Groundwater Velocity:

$$\upsilon_{\mathbf{w}} = \frac{-K * dh}{n * dl}$$

Sr-90 Velocity Relative to Groundwater Velocity

$$\frac{\upsilon_{\text{w}}}{\upsilon_{\text{Sr-90}}} = 1 + \frac{\rho_b}{n} * K_d = 1 + \frac{2.0g/ml}{0.28} * 15ml/g = 108$$

 $v_{\rm w}$ = Groundwater Pore Velocity

K = Hydraulic Conductivity

n = Porosity

dh = Change in Water Level

dl = Change in Distance over which Water Level Change Took Place

 v_{Sr-90} = Sr-90 Velocity in Groundwater

 ρ_b = Bulk Density

K_d = Bulk Distribution Coefficient

Conceptual Model for 100- N Area cont'd

Further excavation will have no meaningful impact on the Sr-90 groundwater plume, and will not benefit human health or the environment

1301-N and 1325-N Liquid Waste Disposal Facility operations resulted in a "pancake" of Sr-90 contaminated soils and aquifer matrix that runs from the trenches to the Columbia River – this is the current and future source of Sr-90 in the aquifer

Sr-90 remaining in the vadose zone below the 1301-N and 1325-N Liquid Waste Disposal Facilities is an inconsequential contributor to groundwater contamination

Excavation and removal of all the contaminated soils from the trenches to the river will not result in cleaning up the aquifer

- A concentration of >0.12 pCi/g Sr-90 in the wetted soils of the aquifer will exceed the drinking water standard of 8 pCi/L
- This level is exceeded between the trenches and the Columbia River

Sr-90 Concentration Levels on Soils in Nearby Wells

Geochemistry of Stontium-90

The mobility of Sr-90 is determined by the ability of the different rock types to adsorb the Sr-90 available in the water. This is expressed by a simple ratio known as the bulk distribution coefficient also known as the K_d , which is the ratio of the mass on the solid phase per unit mass of solid phase divided by concentration in the water phase:

The K_d for Strontium-90 has been measured in over 80 separate tests for the 100-N soils (Serne and Legore, 1996). For the coarse grained sediments of the Ringold Formation, found in this area, Serne recommends a bulk distribution coefficient of 15 ml/g

Effects of Natural Radioactive Decay

- Sr-90 Half-Life is 28.6 years.
- 50% reduction of Sr-90 in soils and groundwater in less than 30 years
- 90% reduction of Sr-90 in soils and groundwater in less than 95 years

Phase II(b) Sr-90 Results (pCi/L): 100N Area

LWDF LFI Data Slides

Hanford ERC Team

Depths of Samples at Boreholes

LEGEND

■ Split-spoon sample interval

■ Grab Sample Point

A Archive

▼ Water Table

Soil

Soil

Boulder Field in Crib

Radionuclide Contamination with Depth, 199-N-107A (1301-N Crib)

Radionuclide Contamination with Depth, 199-N-108A (1301-N Trench)

Radionuclide Contamination with Depth, 199-N-109A (1325-N Crib)

RLS Log
Quanterra
222-S

RLS does not detect beta emitters including strontium-90. Cesium-137 not detected on RLS log below 336 feet elevation. Elevation in NGVD29.

Figure 1. Characterization Boreholes, and Existing Wells to be Geophysically Logged Locations of 1301-N and 1325-N Liquid Waste Disposal Facilities, Proposed

BACKUP SLIDES

Piezometers, Aquifer Tubes, and Monitoring Wells in the 100-N Area Study Location (2007)

Real Time Monitoring Network

Geochemistry of Stontium-90

The mobility of Sr-90 is determined by the ability of the different rock types to adsorb the Sr-90 available in the water. This is expressed by a simple ratio known as the bulk distribution coefficient also known as the K_d , which is the ratio of the mass on the solid phase per unit mass of solid phase divided by concentration in the water phase:

The $\rm K_d$ for Strontium-90 has been measured in over 80 separate testes for the 100-N soils (Serne and Legore, 1996). For the coarse grained sediments of the Ringold Formation, found in this area, Serne recommends a bulk distribution coefficient of 15 ml/g

Geochemistry of Stontium-90, cont'd

Groundwater Velocity:

$$\upsilon_{\mathbf{w}} = \frac{-K * dh}{n * dl}$$

Sr-90 Velocity Relative to Groundwater Velocity

$$\frac{\upsilon_{\text{w}}}{\upsilon_{\text{Sr-90}}} = 1 + \frac{\rho_b}{n} * K_d = 1 + \frac{2.0g/ml}{0.28} * 15ml/g = 108$$

 $v_{\rm w}$ = Groundwater Pore Velocity

K = Hydraulic Conductivity

n = Porosity

dh = Change in Water Level

dl = Change in Distance over which Water Level Change Took Place

 v_{Sr-90} = Sr-90 Velocity in Groundwater

 ρ_b = Bulk Density

K_d = Bulk Distribution Coefficient

Historic Monitoring 100-N Well Network

